Pular para o conteúdo principal

Aplicações do MMC e do MDC

A Matemática está presente em diversas situações cotidianas, mas às vezes, as pessoas não conseguem associar os fundamentos propostos pelo livro didático, pelo intermédio do professor, com tais situações. O MMC (mínimo múltiplo comum) e o MDC (máximo divisor comum) possuem inúmeras aplicações cotidianas. Vamos relembrar como calcular o MMC e o MDC entre números, observe:

Mínimo múltiplo comum entre 12 e 28



Os números são fatorados ao mesmo tempo, isto é, divididos pelo mesmo número. O quociente da divisão é colocado abaixo do dividendo. Esse processo deve ocorrer até a simplificação total do dividendo.

MMC (12, 28) = 2 × 2 × 3 × 7 = 84

O mínimo múltiplo comum entre os números 12 e 28 é igual a 84.


Máximo divisor comum entre 75 e 125
75 = 3 * 5 * 5
125 = 5 * 5 * 5

Observe que a multiplicação dos fatores primos coincidentes nas duas fatorações, formam o maior divisor comum, então:

O MDC entre (75, 125) = 5 * 5 = 25


Vamos apresentar algumas aplicações cotidianas envolvendo MMC e MDC.



Exemplo 1

Uma indústria de tecidos fabrica retalhos de mesmo comprimento. Após realizarem os cortes necessários, verificou-se que duas peças restantes tinham as seguintes medidas: 156 centímetros e 234 centímetros. O gerente de produção ao ser informado das medidas, deu a ordem para que o funcionário cortasse o pano em partes iguais e de maior comprimento possível. Como ele poderá resolver essa situação?

Devemos encontrar o MDC entre 156 e 234, esse valor corresponderá à medida do comprimento desejado.
Decomposição em fatores primos
234 = 2 * 3 * 3 * 13
156 = 2 * 2 * 3 * 13

MDC (156, 234) = 2 * 3 * 13 = 78

Portanto, os retalhos podem ter 78 cm de comprimento.



Exemplo 2

Uma empresa de logística é composta de três áreas: administrativa, operacional e vendedores. A área administrativa é composta de 30 funcionários, a operacional de 48 e a de vendedores com 36 pessoas. Ao final do ano, a empresa realiza uma integração entre as três áreas, de modo que todos os funcionários participem ativamente. As equipes devem conter o mesmo número de funcionários com o maior número possível. Determine quantos funcionários devem participar de cada equipe e o número possível de equipes.

Encontrar o MDC entre os números 48, 36 e 30.

Decomposição em fatores primos

48 = 2 * 2 * 2 * 2 * 3
36 = 2 * 2 * 3 * 3
30 = 2 * 3 * 5

MDC (30, 36, 48) = 2 * 3 = 6

Determinando o número total de equipes:

48 + 36 + 30 = 114 → 114 : 6 = 19 equipes

O número de equipes será igual a 19, com 6 participantes cada uma.



Exemplo 3

(PUC–SP) Numa linha de produção, certo tipo de manutenção é feita na máquina A a cada 3 dias, na máquina B, a cada 4 dias, e na máquina C, a cada 6 dias. Se no dia 2 de dezembro foi feita a manutenção nas três máquinas, após quantos dias as máquinas receberão manutenção no mesmo dia.

Temos que determinar o MMC entre os números 3, 4 e 6.



MMC (3, 4, 6) = 2 * 2 * 3 = 12

Concluímos que após 12 dias, a manutenção será feita nas três máquinas. Portanto, dia 14 de dezembro.

Exemplo 4

Um médico, ao prescrever uma receita, determina que três medicamentos sejam ingeridos pelo paciente de acordo com a seguinte escala de horários: remédio A, de 2 em 2 horas, remédio B, de 3 em 3 horas e remédio C, de 6 em 6 horas. Caso o paciente utilize os três remédios às 8 horas da manhã, qual será o próximo horário de ingestão dos mesmos?

Calcular o MMC dos números 2, 3 e 6.




MMC(2, 3, 6) = 2 * 3 = 6

O mínimo múltiplo comum dos números 2, 3, 6 é igual a 6.


De 6 em 6 horas os três remédios serão ingeridos juntos. Portanto, o próximo horário será às 14 horas.

Comentários

Postagens mais visitadas deste blog

Macete Para Resolver Questões de MMC e MDC

Macete Para Resolver Questões de MMC e MDC Vamos abordar hoje um assunto muito importante em provas de Enem e Concursos públicos: M.M.C. e M.D.C. Veja aqui nesse post a forma mais fácil ou macete para resolver questões de MMC e MDC Macete Para Resolver Questões de MMC e MDC Vamos abordar as melhores formas de resolução e aprender a identificar e quando iremos usar o MMC e quando usaremos o MDC. É muito fácil calcular o MMC e o MDC de dois números, mas quando cai envolvendo uma resolução de problemas nas questões de concursos se torna complicado. Por isso precisamos identificar as palavras chaves que tornam mais fácil a interpretação e a aplicação correta da técnica que iremos mostrar. A primeira coisa a fazer é definir se a questão é de MDC ou de MMC, depois é só aplicar a técnica correta inerente a cada uma. Macete Para Resolver Questões de MMC e MDC Máximo Divisor Comum (MDC) Ideia de divisão Repartir em partes iguais Maior tamanho possível Podemos facilmente ...

Regra prática para calcular MMC

Para sabermos o múltiplo de um número, basta multiplicá-lo por outro número. Observe os múltiplos do número 2: 2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8 2 x 5 = 10 2 x 10 = 20 2 x 20 = 40 ... ... ... Vamos observar os múltiplos do número 3: 3 x 1 = 3 3 x 2 = 6 3 x 3 = 9 3 x 4 = 12 3 x 5 = 15 3 x 6 = 18 3 x 10 = 30 Vale ressaltar que os múltiplos de um número são infinitos. No caso do MMC (mínimo múltiplo comum) entre números naturais, podemos determinar o menor múltiplo aos números dados, de duas maneiras distintas. A primeira consiste em determinar alguns dos múltiplos dos números verificando o menor comum, ou aplicar a regra prática que consiste em fatorar todos os números num mesmo instante. Conheça a 1ª maneira: Vamos determinar o MMC entre os números 12, 18 e 24 12 = (12, 24, 36, 48, 60, 72, 84, 96, ...) 18 = (18, 36, 54, 72, 90, 108, ...) 24 = (24, 48, 72, 96, 120, 144, ...) Observe que dentre os múltiplos descritos, podemos verificar que o número 72 é o menor múltiplo comum aos a...